
Advanced service architecture for H.323 Internet Protocol Telephony

J. Tanga, T. Whitea, B. Pagureka,* , R. Glithob

aSystems and Computer Engineering, Carleton University, Ottawa, Canada
bEricsson Research Canada, Montreal, Canada

Abstract

Internet Protocol (IP) based communication is fast becoming a viable alternative for voice communications. The Intelligent Network (IN)
represents the world wide accepted basis for the uniform provision of advanced telecom services. Mobile Agents offer unique opportunities
for structuring and implementing open distributed service architectures, facilitated by the dynamic downloading and movement of service
code to specific network nodes. In this paper, a new service architecture for IP telephony, based on the ITU-T standard H.323, is proposed.
The implementation uses Mobile Agents as an enabling technology and existing architectural concepts taken from IN. This IP service
architecture enables telecom services deployed through mobile service agents on a per user basis, which results in several advantages when
compared to centralized service architectures.q 2000 Elsevier Science B.V. All rights reserved.

Keywords: IP telephony; Mobile agents; H.323 supplementary services

1. Introduction

In February 1995, Internet Protocol Telephony [1–3] or
IP telephony, which delivers voice and data [4] communi-
cations over IP networks, became a reality for the first time
when Vocaltec, Inc. introduced its Internet Phone software
[3]. Because of its low price and efficient use of bandwidth,
it has progressed rapidly in the relatively short period of
time since then. As the Internet is an open, distributed and
evolving entity, it is expected that there will be many exten-
sions to IP telephony. In the classical telephony world which
is based on circuit switched networks, a number of service
architectures have been developed in the last decade; for
example, the Intelligent Networks (IN) framework, Tele-
communications Management Network (TMN), Telecom-
munications Information Networking Architecture (TINA),
etc. The purpose of these service architectures is to increase
the quality and range of services offered in communication
networks. In order to compete with classical telephony in
today’s market, one of the challenges that IP telephony faces
is to offer not only the same high quality voice calls, but also
a set of call features (i.e. advanced services) that classical
telephony offers today. While the high quality of voice calls
has yet not been achieved in the IP telephony world, sound
architectures are needed for the control and management of
services.

The traditional telephone system has very primitive

end-terminals (telephones) and considerable intelligence
inside the network [5]. Advanced service architectures sepa-
rate call setup and call processing functions. In general, the
Internet represents a different balance, with intelligent end-
terminals (computers) and a simple set of functions inside
the switches of the network. Switches are composed of soft-
ware and general-purpose hardware. It is reasonable to fore-
see that long-term evolution of IP telephony will have much
more intelligence implemented in the end terminals rather
than inside the network. Advanced services such as call
diversion and call transfer, which are implemented inside
the telephone network today, can be implemented in users’
computers.

In order to realize this view of IP telephony, appropriate
protocols and technologies are needed. Currently, there are
two protocols that address this issue, one is International
Telecommunication Union–Telecommunication Standard-
ization Sector (ITU-T) H.323 [6] and the other is the Inter-
net Engineering Task Force (IETF) Session Initiation
Protocol (SIP). The first version of H.323 specification
was approved in 1996 by the ITU-T’s Study Group 16.
Version 2 was approved in January 1998. A third version
of the standard is planned for approval in 1999. The stan-
dard is broad in scope and includes both stand-alone devices
and embedded personal computer technologies as well as
point-to-point and multi-point conferences. SIP is rather
lightweight, reusing many of the header fields, encoding
rules, error codes, and authentication mechanisms of HTTP
(see, for example Refs. [7,8] for a comparison and Ref. [9]
for a critique). While service architecture requirements for

Computer Communications 23 (2000) 740–753
www.elsevier.com/locate/comcom

0140-3664/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(99)00234-0

* Corresponding author.
E-mail address:bernie@sce.carleton.ca (B. Pagurek).



IP telephony have yet to reach maturity, a set of require-
ments for Telecommunications Information Networking
Architecture Consortium (TINA-C) [10] service architec-
ture described in Ref. [11] are gradually being adopted. In
this report, we use them to evaluate the service architecture
defined in H.323, and the new service architecture described
later. The Service life cycle, defined by TINA-C service
architecture recommendation, consists of service construc-
tion, deployment, utilization and withdrawal. Each stage of
the service life cycle is explained in Ref. [11]. The require-
ments used to explore IP telephony advanced service archi-
tectures can also be found in Ref. [11].

Supplementary services supported by H.323 are specified
in H.450.x. Each of the defined supplementary services has
its own specification. As pointed out in Ref. [8], “How they
may be broken down into reusable building blocks is not
clear and this will lead to specification and implementation
inefficiency.” The H.323 specification does not address
service control and management. In addition, there are no
third party defined services. Hence there is obviously room left
for developers to design more flexible service architectures
using enabling technologies; e.g. Mobile Agents (MA).

IP telephony is real-time data communications over IP
transport. As the Internet is an open, distributed and
evolving entity, flexibility, scalability and robustness are
very important issues to be considered when designing
new service architectures. MA technology has the ability
to provide solutions addressing all of these issues. As
pointed out in Ref. [12], the key advantage of MA is flex-
ibility. It can enhance service architectures, providing easy
service customization and instant service provisioning.

The remainder of this paper is organized as following. In
Section 2, the basic concepts of IN and MA, Jini/JavaBeans,
and advantages for using them, are explained. In Section 3, a
new IP telephony service architecture and aspects of the
implemented solution using MA, Jini and IN concepts are
described. Section 4 presents three scenarios for application
of this new service architecture—Call Forwarding, Call
Transfer and Virtual Private Network (VPN) Services.
Section 5 presents the conclusions relating to this research.

2. Enabling technologies

The Java language, developed by Sun Microsystems, has
a number of advantages that make it particularly appropriate
for MA technology. Its main appeal for agents is its port-
ability, the use of bytecodes and its interpreted execution
environment. This means that any system with sufficient
resources can host Java programs.

The Java Virtual Machine and Java’s class loading
model, coupled with several of Java features—most
importantly serialization, remote method invocation, multi-
threading, and reflection—have made building first-pass
MA systems a fairly simple task [13].

MA, as one of the enabling technology for IP telephony

services, is introduced in Section 2.1. JavaBeans and Jini (both
from Sun Microsystems) are two good complementary candi-
date technologies for the implementation of an IP telephony
service architecture; they are described in Section 2.2.

2.1. Mobile agent technology

Software agents originated with Distributed Artificial
Intelligence (DAI) [14] research, the concept of an agent
can be traced back to the early days of 1970s. There is a
broad range of companies and universities that are actively
pursuing agent technology and the number is growing
steadily. The use of intelligent agents in Telecommuni-
cations has a number of documented advantages [12,15].

An agent can be described as a software component that
performs a specific task autonomously on behalf of a person
or an organization [16]. It contains some level of intelli-
gence, ranging from predefined rules to self-learning Arti-
ficial Intelligence (AI) mechanisms. Thus agents may
operate rather asynchronously to the user and may commu-
nicate with the user, system resources and other agents as
required to perform their tasks. They are often event or time
triggered.

A mobile agent is one of the seven agent types identified
in Ref. [14]. An agent is an object with its private thread of
execution, also known as an “active object” [17]. An MA is
the kind of agent that is not bound to the host where it begins
execution. It has a unique ability to transport itself from one
host in a network to another. As it travels, it performs work
on behalf of a network user. Agent mobility is probably the
most challenging agent property, in that it provides an intel-
ligent agent with the potential to influence the traditional
way of communications and service realization. Customiz-
ability is the result of the diffusion of network services and
applications. It allowsusers to tailor services according to their
specific needs and preferences. Flexibility and extensibility
are due to the dynamic nature of the underlying network infra-
structure and service demand [18]. Other arguments for
mobile agents have also been forthcoming [17,19].

In the past, the main motivations for the application of
mobile agents were the lack of capacity to execute programs
locally, and the desire to share resources and improve load
balancing in a distributed system. In contrast to these
concepts designed for rather specific or closed environ-
ments, new agent concepts aim for open environments
(e.g. the Internet). Today, flexibility is a key design issue
for emerging network service architectures in order to adapt
quickly to the changing customer service demands. The
following are some of the reasons for using MA technol-
ogies:

• An MA-based approach may reduce the network load
when compared to a Remote Procedure Call (RPC)-
based approach.

• Asynchronous and autonomous execution provide the
possibility for realization of advanced services by
means of using mobile agents.

J. Tang et al. / Computer Communications 23 (2000) 740–753 741



• Being independent of the underlying network infrastruc-
ture makes the service architecture extendable.

• MAs allow new services to be provided dynamically
either by customization or (re)configuration of existing
services.

• MAs provide an effective way for deployment and
utilization of advanced services within a distributed
environment.

The MA paradigm and emerging agent technologies are
considered key for implementing open, flexible and scalable
services. There are many commercial and nearly commer-
cial agent platforms, such as Grasshopper (IKV11), Aglets
Workshop (IBM), Voyager (ObjectSpace), Concordia
(Mitsubishi) and Odyssey (General Magic). Interoperability
is therefore becoming an important issue. Sound standards
are needed. The Mobile Agent System Interoperability
Facility (MASIF) specification by OMG represents the
first effort for standardizing agent platforms. It is a specifi-
cation of an agent framework to support agent mobility
based upon the use of the Common Object Request Broker
Architecture (CORBA). Although the MASIF standard
stresses language independence, it is interesting to note
that most notable mobile agent frameworks are implemen-
ted in Java. It is our belief that this trend will intensify. For
this work we chose Grasshopper as the platform, mainly
because of its adherence to the MASIF standard.

In April 1997, CLIMATE—The Cluster for Intelligent
Mobile Agents for Telecommunication Environments, a
pool of projects within the European Union collaborative
research and development program on Advanced Commu-
nications Technologies and Services (ACTS), was launched
to explore the usage of agent technologies. Most of these
projects are located within the Service Engineering, Secur-
ity, and Communications Management domains. CLIMATE
is taking an active part in contributing to relevant agent
standards (e.g. OMG, FIPA) and telecommunication
standards (e.g. IN, TMN, UMTS standardization). Notably,

the Grasshopper MA framework has been developed under
the CLIMATE umbrella. A proposal for the use of mobile
agents in network management problems has also been
forthcoming [20].

2.2. Jini/JavaBeans

The JavaBeans specification is an object-oriented
programming interface that is used to build re-useable
application or program building blocks called compo-
nents that can be deployed in a network or any major
operating system. Ideally, any Java components
conforming to the JavaBeans component model can be
reused in any other JavaBean compliant application.
Every Bean not only complies with the JavaBean
model, it also carries with it all its properties and methods,
which can be easily garnered through introspection—a
JavaBean property whereby any Bean-aware tool (e.g. a
visual programming tool) can analyze and report on how a
Bean operates.

Jini [21] technology takes advantage of the Java
language. It brings to the network facilities for distributed
computing, network based services, seamless expansion,
reliable smart devices, and easy administration. It provides
lookup services and a network bulletin board (or black-
board) for all services on the network. Jini allows the search
of services connected by the communication infrastructure
and stores not only pointers to the service on the network,
but also the code and/or code pointers for these services.
Fig. 1 shows the Jini architecture. The components of the
Jini system can be segmented into three categories:
infrastructure, programming model and services. The
infrastructure is the set of components that enables
building of a federated Jini system, while the services
are the entities within the federation. The programming
model comprises interfaces that enable the construction of
reliable services.

J. Tang et al. / Computer Communications 23 (2000) 740–753742

Lookup

Discovery / Join

JavaSpaces Print Shopping Other …

RMI

Java Virtual Machine

Services

Jini
Infrastructure

Programming
Model

Distributed Facilities
•Leasing
•Events
•Transactions

Solaris Mac Windows OS ?

Sparc PPC x86 CPU?

Fig. 1. Jini architecture.



2.3. Intelligent networks and service-independent building
blocks (SIBs)

Intelligent Network [22–24] services are based on
additional service logic and data on top of different switched
telecommunication networks. Centralized service nodes
known as Service Control Points (SCPs) control the tele-
communications network via a dedicated out of band signal-
ing network; i.e. the International Signaling System No. 7
(SS7) network. The bearer switching nodes, known as
Service Switching Points (SSPs), provide only basic call
processing capabilities. IN service deployment and manage-
ment is realized through a Service Management System
(SMS), which interacts with IN elements via a data commu-
nication network. Since the SSPs and the SCP have to inter-
act for each IN service call (usually multiple times), the
signaling network and the central SCP may become serious
bottlenecks. Furthermore, SCP failures would result in
global service unavailability.

The IN platform provides greater flexibility for service
creation in general and also for the tailoring of services to
suit the exact requirements of a particular customer. IN-
based services rely on service-independent building blocks
(SIBs) these being the smallest units in service creation.
SIBs are reusable and can be chained together in various
combinations to realize services. They are defined to be
independent of the specific service and technology for
which or on which they will be realized.

With more effort to standardize agent platforms, agent
platforms are maturing, and with Java as an enabling tool
for implementing MAs, the MAs have brought tremendous
opportunities for development of MA-based service archi-
tectures for IP telephony. It should be noted that MA archi-
tectures for traditional IN services in the PSTN [16] and
Internet services [25] have already been proposed. The
use of CORBA and Java for multimedia services has also
been proposed [26] as has the integration of IN and Internet
services [27].

3. Mobile agent based advanced service architecture for
H.323 supplementary services

3.1. Advanced service architecture

As a consequence of the drawbacks of the existing service
architecture defined by H.323 described earlier, we propose
an MA-based advanced service architecture for implement-
ing H.323 supplementary services using the widely accepted
service provisioning basis (IN), enabling technology (MA,
Jini/JavaBeans) and the requirements described in Ref. [11].

The main idea of this architecture is to provision H.323
supplementary services in a uniform, but very flexible way,
supporting dynamic deployment of services. Mobile agent
platforms are introduced into the devices that are connected
to the enterprise LAN. H.323 supplementary services are

realized by means of mobile service agents. The key to
this approach is to deploy service agents to the service
users; i.e. the call parties, which makes this service archi-
tecture open, distributed and flexible.

This service architecture allows for open service creation.
Supplementary services can be created by a different
Service Component Creator (SCC) using Service Com-
ponents from a Service Component Repository (SCR).
Service utilization is realized by activating a caller’s User
Service Agent (USA) and ultimately activating the callee’s
USA. A Call Agent (CA) will be instantiated by the result of
a USA creating a new CA. Using terminology from the
Design Patterns community, the USA represents a factory
for call agents. The USA has responsibility for service
management. The CA embodies the call processing func-
tionality required to set up the call, e.g. it interfaces with an
H.323 protocol stack for call setup. In this way we have
clear separation of service management and call processing
responsibilities.

This architecture supports universal access to the service
through the Jini Lookup process. Service customization is
also supported by this service architecture. Each user
connected to the network can define his or her own service
data. An example of such data could be the number to which
calls might be forwarded in a forwarding service like CFU.
Service logic is not embedded in the network nodes but
ultimately in the end user’s terminal. This makes this
service architecture highly distributed.

As illustrated in Fig. 2, H.323 gatekeepers and H.323
terminals (users) are connected to the Enterprise LAN. An
agency that provides an agent execution environment is
attached to each gatekeeper and terminal. User terminals
join one gatekeeper’s zone through gatekeeper discovery
and an endpoint registration process. Lookup Services
(LUSs) are more like a blackboard where all the available
services’ proxy code (interface of a service not the actual
service code) is placed. A Service Component Creator
(SCC) is responsible for creating components that are
made available to an Enterprise Service Creator (ESC)
and advertising its services on a LUS, where all the service
components are stored in the Service Component Reposi-
tory (SCR). These service components can be assembled
into new services by an SCC; end users can not subscribe
to services from an SCC directly. The SCC and SCR bring
opportunities for third party service creators and providers,
making them able to compete in the service market. LUSs
can be local or remote; they are linked by the Internet. A
Service Management Unit (SMU) is a device that can be
placed in the gatekeeper, or completely separated from the
gatekeeper. It manages service subscription using protocols
not defined by H.323; e.g. HTTP. If a service is to be
dynamically upgraded, the SMU would be involved. Also,
the SMU could be involved in ongoing network manage-
ment of the services. A SMU can discover an enterprise
LUS using a multicast protocol; a unicast protocol is used
to discover remote LUSs that are outside of the enterprise

J. Tang et al. / Computer Communications 23 (2000) 740–753 743



LAN. In the latter case, the SMU has to know where the
LUS is before it sends out a request to the remote LUS. An
Enterprise Service Creator (ESC) is responsible for custom-
izing/assembling the service components into services they
provide to the end user using the available code from a
Service Implementation Repository (SIR).

In summarizing the roles of the participant components
introduced above, Jini is used to provide access to service-
related code and service creators generate service com-
ponents which they advertise by storing them in a Jini
lookup service. These components are discovered by Enter-
prise service creators who generate value-added services
specific to their own enterprise needs. These value-added
service components are made available to users by advertis-
ing them in Jini lookup services visible from inside the
enterprise network. When subscribing to specific services,
users may ask to be notified of changes to that service. For
example, should a service need to be taken off line for
maintenance purposes, the users subscribing to this service
can be notified thereby making possible the identification of
an alternate provider. This notification of service changes
allows for enhanced user-controlled service management.

In the following discussions, we will present one scenario
for service subscription when only one gatekeeper is
involved and one scenario for service utilization when one
gatekeeper is involved, and at the same time we will explain
all the related components’ functionality. These scenarios
are presented as they represent familiar H.450.x standard
services. However, the architecture proposed in this paper
is considerably more flexible. For example, none of the
examples presented in this paper require the generation of
more than a single CA. Future services will, in all likeli-
hood, require more.

3.2. Service subscription and utilization using mobile agents

There are four phases in the life cycle of a service; they
are: service creation, subscription, utilization and withdrawal.

Service subscription and utilization using this MA based
advanced service architecture are described in this section.
The example of VPN service will be used to illustrate the
key points in Fig. 3. A VPN can be thought of as a service
comprising feature sets that have been customized for a
particular enterprise.

Referring to Fig. 3, service subscription consists of
four steps, the first of which is shown in the figure. The
steps are:

• First, as shown in the figure, the Service Component
Creator advertises a generic VPN service proxy object
using the Service LUS.

• Next, the Enterprise Service Creator discovers the
Service LUS, downloads the VPN service proxy object
to its machine, and uses its graphical user interface (GUI)
to customize the VPN service for its enterprise users.

• Then, the Enterprise Service Creator uploads its cus-
tomized service proxy object to the e-Service LUS.
This service proxy will be downloaded to the Service
Management Unit.

• Finally, any user can send a request to its SMU to
subscribe to services, as shown by the top arrow in Fig.
4-1.

Referring to Fig. 4-1, after the SMU receives a service
subscription request from the end user, it multicasts the
request in the network, discovering LUSs which have
supplementary services. Following discovery, the SMU
gets a response from the LUS listing all the supplementary
services it has on the network and the addresses/URLs of
other LUSs outside of the enterprise which have the same
kind of services available. Using this list, the SMU
constructs a service subscription form and sends it to the
end user stating that these are the supplementary services
available. The end user selects the services that he
wants, fills in the form and sends it back to the SMU.
The form includes facilities for the user to specify
service related data. The user may not find all the

J. Tang et al. / Computer Communications 23 (2000) 740–753744

Service
Component

Creator
LUS
[service]

Enterprise Service
Creator

LUS
[e-service]

Service
Component
Repository

Service
Implementation

Repository

Gatekeeper1

SMU

Gatekeeper2

 SMU

User11

Enterprise LAN

User12 User13 User21 User22 User23

Internet

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

nc
y

Fig. 2. Mobile code for IP telephony.



services he wants. In this case, the user should send a
message to the SMU indicating that he/she wants parti-
cular services that are not in the form, the SMU then
queries other available LUSs external to the enterprise
LAN using the addresses/URLs from the last query.
After the SMU receives the completed form from the
user, it checks its User Profile, which contains all the
services that are already in use by each user. Then it
sends a request to the lookup service to download the
proxy code (interfaces) of the services to which this
user has subscribed. When the SMU checks the user
profile, the following things may occur:

• The service/services that the user wants to subscribe to is
already there; then the SMU sends a notification to the

user indicating that the requested service or services are
already provisioned.

• Some of the services the user requested are already avail-
able to the user; then the SMU sends a notification to the
user, and it also sends the proper request to the LUS.

• If all the services are new to the user, the SMU sends a
request to the lookup service to download the proxy code
of the services that the user has requested.

The service proxy code will be downloaded to the SMU.
The proxy code contains the interfaces that a gatekeeper
needs to construct a USA, and the location of a SIR where
to find the actual service code. There may be many URLs
for the addresses of multiple SIRs. A customized USA will
be sent to the user agency (as shown in Fig. 4-2), and resides

J. Tang et al. / Computer Communications 23 (2000) 740–753 745

SMU

Gatekeeper Agency

EnduserB

End User Agency

Subscription form
Filled form

Subscription request

Figure 4-1

SMU

Gatekeeper Agency

EnduserB

End User Agency

Figure 4-2

Fig. 4. Service subscription and USA allocation.

Internet

   Service 
Component

Creator

LUS
[e-service]

Gatekeeper
1 Gatekeeper2

User
11

Enterprise LAN

User
12

User
13

User
21 User

22
User

23

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

A
ge

n
cy

Service

 Implementation
Repository 

Service
Component
Repository

Enterprise Service
Creator

[Service]

URL of SCR

VPN
Generic Service

Object
(Proxy)

LUS

SMU SMU

Generic VPN proxy object acts as 
an intermediate service code that
would arrange downloading of 
the actual service code from SCR.

Service Component Creator 
(SCC) advertises its Generic 
VPN service on the LUS. This 
service is constructed using SIBs 
(e.g.,JavaBeans) from Service 
Component  Repository  by SCC.

Fig. 3. Service subscription Using Jini.



in the user’s terminal. Once the user receives the USA, it
acknowledges the SMU.

As illustrated in Fig. 5, a USA consists of ServiceClass,
Code Repository URL and User Logic and data. It defines
how a call will be processed; e.g. the management of feature
ordering. It handles service management and other aspects
of network management; e.g. fault management.

3.2.1. More detailed explanation of USA and CA
The Call Model component of the USA is an IN call

model consisting of two separate sets of call processing
logic: Originating and Terminating call models. The Orig-
inating call processing logic provides support to the Calling
Party, and is modeled by the Originating Basic Call Model
(O-BCSM). The Terminating call processing logic provides
support to the Called Party, and is modeled by the Termi-
nating Basic Call Model (T-SCSM).

The call model provides support for a finite state machine
with points of interaction with advanced service implemen-
tations. In the traditional IN view of advanced services,
these points of interaction would be implemented using
trigger points. In the approach proposed here, using com-
ponent-based technology, we would expect JavaBeans to be
used with well-known interfaces and the interaction mode
would be via method call.

Referring again to Fig. 5, the ServiceClass (Call Model)
is a call model specific to an end user. We view the Call
Model as a basic service, nothing more.

The User Logic in Fig. 5 represents processing that is

required for subscribed services. For a specific service, in
one call processing state, it specifies how we deal with this
specific service and what the next step is in the call proces-
sing. For sophisticated services, the Call Model may have
provision for the user to write scripts (rules, perhaps) that
add a degree of intelligence to the service. Choosing an
example from the e-mail domain, we might choose to
write scripts that filter out particular callers, or calls from
a specific set of network addresses.

The User Data in the above figure is the service-related
data. For example, after a user chooses a service (e.g. CFU),
he/she will also be asked to fill in the phone numbers to
which he/she would like to forward calls.

To reiterate, the USA consists of a Call Model, one or
more Service Implementation Repository URLs (references
to where the service code can be found) and User Logic and
User Data.

The Call Agent is an MA that implements the specific call
model for a particular end user and makes use of basic call
processing functions to control the call setup.

A USA is constructed when the end user sends a request
for service subscription. The call model will be unique to the
user according to its subscribed services at subscription
time. For example, user B may subscribe to Call Forwarding
Unconditional (CFU) and Call Transfer (CT). In this case,
the ServiceClass component of the USA will be a call model
that has different trigger points at different points in the call.
For CT, the service trigger point would be in the originating
call model. For CFU, the service trigger point would be in
the terminating call model. Once constructed, the USA
moves to the user local agency from the gatekeeper as
shown in Fig. 4-2.

The sequence of how a call is set up using the USA and
CA is illustrated in Fig. 6. When user A, who has not
subscribed to any advanced services, starts a new call, the
Basic Call Processing (BCP) function in the user terminal
will be invoked. As a result of the function call, a setup
message is sent to the called party (user B) via the gate-
keeper (1). If the gatekeeper routed call signaling mode is
used, the USA moves to the gatekeeper agency (2). A call
signaling message callProceeding is sent back (3) to userA.
The SMU checks its user profile—user B has subscribed to
CFU and CT—and hence there must be a USA for user B.
So user B’s USA is activated and a Call Agent (CA) which
implements the call model is instantiated (4). The USA
instantiates a CA by performing a new Call Agent (USA)
call. At this time, the USA and CA reside in the same
agency. The CA gets a handle of its parent USA so that
these two can communicate with each other by method
calls. The CA also makes use of the BCP functions available
in the gatekeeper and can also obtain the code it needs (i.e.
code related to advanced services) through URLs provided
by USA. Then, the CA will take over the call processing, i.e.
it acts on behalf of user B who has subscribed to the various
advanced services (5).

Call control messages are sent between user A and the CA

J. Tang et al. / Computer Communications 23 (2000) 740–753746

Call Model

1
2

CFB
CT

ServiceClass

 User Logic & Data

USAUSA

Service Implementation
Repository URL

Fig. 5. User service agent.

End userA

End User
Agency

End userB

End User
Agency

SMU

Gatekeeper Agency

End userC

End User
Agency

2

1

4

3

5

Fig. 6. Call setup using USA.



on behalf of user B. So, the CA will know that whenever it
gets an incoming call, it will forward the call the phone
number (IP address) that B has specified during the service
subscription process.

Fig. 7 illustrates a high-level class interaction view of the
USA and CA. In the figure, the attribute codeLocation of the
class USA is a hashtable which contains associations of
serviceName and codeLocation URL, one URL for each
service as different services may come from different
vendors.

Service Utilization is shown in Fig. 8. Once a user has
initiated a call (1), the USA moves to the gatekeeper’s
agency if it is gatekeeper routed call signaling, and a Call

Agent (CA) is instantiated using the code retrieved from the
SIR. The CA sends call signaling to the called endpoint via
the gatekeeper.

For the called endpoint USA, as soon as it receives the
first setup message, the USA moves to the gatekeeper if it is
a gatekeeper routed call signaling, a CA is instantiated using
the code retrieved from the SIR, and a CA sends all call
signaling to the calling endpoint via the gatekeeper. For
endpoint-to-endpoint call signaling, the USA will be

J. Tang et al. / Computer Communications 23 (2000) 740–753 747

Public class CallModel Public class Service
1…*

Public class TerminatingCM Public class OriginatingCM

Public class CallAgent

TerminatingCM: termCM
OriginatingCM: origCM

CallAgent(USA usagent)
move(IPAddress userAddr)

Public class BasicCallProcess

Public class CFU Public class CT

Public class CFNR Public class CFB

1

Public class USA

Hashtable: codeLocation
CallModel: callModel
Hashtable: servicedata

Move(IPAddress userAddr)

1 1

Fig. 7. High-level view of USA–CA interaction.

LUS
[e-service]Service

Implementation
Repository

User11
User12 User13

Ag
en

cy

Ag
en

cy

Ag
en

cy

Ag
en

cy

1 23

4

5

Gatekeeper1

EnterpriseLAN

Fig. 8. Service utilization.

Table 1
Service requirement support

1. Support all life cycles phases Most supported
2. Support a wide range of
services

Yes

3. Support multi-player
environments

Through JavaBeans

4. Rapid service creation and
deployment

Yes, through service creation
environments (vendor and
enterprise)

5. Tailored services Yes, through enterprise service
creation environment and end-
user customization

6. Independent evolution of
network and service
infrastructure

Not really, still have to interwork
with classical telephony network

7. Universal access Yes, Jini provides location
transparency

8. Interwork with other service
architecture

Possible with IN if gateway
technology built



executed in the user local agency instead of moving to the
gatekeeper’s agency.

3.3. Architecture discussion

The service requirements from Ref. [11] are listed in
Table 1. The intention with the architecture proposed in
this paper is to meet more of the needs of the phases of
the lifecycle of a service. Clearly, this mobile agent
advanced service architecture fulfills more of the require-
ments for today and tomorrow’s IP Telephony advanced
service architecture when compared to traditional service
creation and utilization environments such as are found in
PSTN networks (for example).

4. Service subscription and utilization scenarios

In this section, four advanced service scenarios are
presented. One scenario is VPN service subscription.
Here, a VPN is a private enterprise telephone network estab-
lished by the enterprise administrator. Such a VPN can be
used, for example, to control who has access to VPN
services such as long-distance calling etc. The remaining
three are used to illustrate the USA’s and CA’s movement
on deployed supplementary services using H.323 messag-
ing. Several examples are provided with one gatekeeper
involved and gatekeeper routed call signaling; i.e., Call
Forwarding (CF) in Section 4.2, Call Transfer (CT) in
Section 4.3, and VPN in Section 4.4. CF and CT are defined
by ITU-T standard H.450.x; VPN is not currently defined in
the standards.

4.1. VPN service subscription

Fig. 9 is explained by the following.

Assumption:The messages used in Fig. 9 are not defined
by H.323, they need to be defined in the future.

Description:

1. The SCC discovers a LUS and advertises the generic
VPN on the LUS by uploading the generic VPN service
proxy object.

2. The ESC discovers the generic VPN and downloads the
VPN service proxy object.

3. After the ESC has customized the generic VPN service
for its enterprise users, it discovers and uploads the cus-
tomized VPN to the enterprise LUS, the e-LUS.

4. The end user requests the use of the customized VPN
service.

5. The SMU discovers the e-LUS that has the VPN service
and downloads the service proxy object.

6. The SMU uses the downloaded proxy object to construct
a USA, and sends it to the user agency.

7. When the user receives a USA, it sends an acknowledge-
ment to the SMU indicating that a USA has been received.

8. The SMU sends a message to the end user indicating that
service subscription is completed.

4.2. Call forwarding

4.2.1. Call forwarding unconditional using end-to-end call
signaling

Fig. 10 is explained as follows.
Assumption:The client application will be responsible for

sending messages specified by the CA to the other appli-
cations which are dealing with the call setup process. The
CA can accomplish this by calling a client application’s
interfaces.

Description:

1. An Originator (Caller) application sends a SETUP

J. Tang et al. / Computer Communications 23 (2000) 740–753748

UserSMUe - LUSESCLUSSCC

1
2

3

4
5

6

7

8

Fig. 9. VPN service subscription.



message to the Called party (Callee), a flag will be set in
SETUP message’s NonStandardControl field to activate
the USA, so that a Call Agent is instantiated.

2. After the call agent is instantiated—it resides in the
callee’s user agency—it takes over the call processing
from the client application, sending out all the call setup
related call signaling messages.

3. The Call Agent sends RELEASE COMPLETE to the
caller.

4. The Call Agent sends SETUP with divertingLegIn-
fo2.inv to the diverted-to party.

5. The Call Agent sends FACILITY with divertingLegIn-
fo1.inv to the calling party.

6. The Diverted-to party sends ALERTING to the Call
Agent.

7. The Call Agent sends ALERTING to the calling party.
8. The Diverted-to party sends CONNECT to the Call

Agent.
9. The Call Agent sends CONNECT to the calling party.

4.2.2. Call forwarding unconditional using gatekeeper
routed call signaling

Fig. 11 is described as follows.
Assumption:Same as CFU using end-to-end call signal-

ing.
Description:

1. The originator sends SETUP message to the Gate-
keeper.

2. The Gatekeeper responses with CALL PROCEEDING.
3. The Gatekeeper sends SETUP with diveringLegIn-

fo4.inv to called endpoint.
4. The called endpoint sends RELEASE COMPLETE

with USA in the NonStandardData field.

5. Once the Gatekeeper receives the USA, a Call Agent is
instantiated.

6. The Call Agent sends SETUP with divertingLegIn-
fo2.inv to the diverted-to endpoint.

7. The Call Agent sends FACILITY with divertingLegIn-
fo1.inv to the calling endpoint.

8. The Diverted-to endpoint sends ARQ to the Gatekeeper
indicating it will accept the call.

9. The Gatekeeper sends ACF to the Diverted-to endpoint
with the Gatekeeper’s call signaling transport address.

10. The Diverted-to endpoint sends ALERTING to the Call
Agent via the Gatekeeper.

11. The Call Agent sends ALERTING to the originator.
12. The Diverted-to endpoint sends CONNECT with diver-

tingLegInfo3.inv to the Call Agent via the Gatekeeper.
13. The Call Agent sends CONNECT with divertingLegIn-

fo3.inv to Originator.

4.3. Call transfer

Fig. 12 is explained by the following.
Assumption:Call Agent has been instantiated in the caller

agency when the caller started making call.
Description:

1. The Transferring endpoint (A) sends FACILITY with
CTInitiate.inv to CA.
2. The Call Agent sends SETUP with CTSetup.inv,opt.C-
TUpdate.inv to the transferred-to endpoint(C).
3. The Call agent sends CONNECT with CTSetup.r-
r,opt.CTUpdate.inv to the transferred-to endpoint(C).
4. The Call Agent sends FACILITY with CTComple-
te.inv to the transferring endpoint(A).
5. The Call Agent sends Terminal Capability Set C to the
transferred-to endpoint.

J. Tang et al. / Computer Communications 23 (2000) 740–753 749

Originator CallAgent Called Diverted-to

SETUP

CA instantiated

RELEASE COMPLETE

FACILITY(divertingLegInfo1. inv)

CONNECT (divertingLegInfo3. inv)

CONNECT (divertingLegInfo3. inv)

ALERTING

ALERTING(7)

SETUP(divertingLegInfo2. inv)

1

2

3

3

4

5

5

6

7
7

8
9

9

Fig. 10. CFU (end-to-end call signaling).



6. The transferred-to(C) endpoint sends TCS� 0 to the
Call Agent.
7. The Call Agent sends TCS� 0 to the transferring(A)
endpoint.

8. The Call Agent sends TCS� 0 to the transferred (B)
endpoint.
9. Close Channels between transferring point (A) and
transferred endpoint (B).

J. Tang et al. / Computer Communications 23 (2000) 740–753750

Close channels

GK

FACILITY(CTInitiate.inv)

A

TCS = 0

RELEASE COMPLETE
(CTInitiate..rr)

FACILITY (CTComplete.inv)

SETUP
(CTSetup.inv, opt.CTUpdate.inv)

CONNECT

CTSetup.rr, optCTUpdate.inv)

Terminal Capabilities Exchange

Master - Slave Determination

Open Logical Channel

Terminal Capability Set C

B C

TCS = 0

TCS = 0

CallAgent

2
2

3
3
4

4
5

5

6
7

8
8

9
10

10 10’

10’
11

11’11

11’
12

12 12’
12’

13

1

Fig. 12. CT (Gatekeeper routed call signaling).

Diverted-ToOriginator Gatekeeper CalledCallAgent
SETUP

SETUP
CALL PROCEEDING

divertingLegInfo4.inv

RELEASE COMPLETE ( NonStandardData  = USA )

(divertingLegInfo2.inv)

FACILITY(divertingLegInfo1.inv)

ARQ

ACF

ALERTING

ALERTING

CONNECT
divertingLegInfo3.inv

CONNECT
divertingLegInfo3.inv

SETUP

CA Instantiated

1

2

3

4

5

6
6

7

8

9

10

10

11

12

12

13

Fig. 11. CFU (Gatekeeper routed call signaling).



10, 100. CA sends Terminal Capability Set to the trans-
ferred (B) and transferred-to(C) endpoints.
11, 110. CA sends Master/Slave Determination to the
transferred(B) and transferred-to(C) endpoints.
12, 120. The Call Agent sends Open Logic Channel to
the transferred (B) and transferred-to (C) endpoints.
13. The Call Agent sends RELEASE COMPLETE to the
transferring (A) endpoint.

4.4. VPN—outgoing call allowance (OCA)/outgoing call
restriction (OGR)

The OCA and OGR VPN features allow an enterprise
administrator to restrict the numbers that may be called
from within an enterprise. For example, an easily accessible
terminal might be restricted to numbers within the enter-
prise whereas a terminal on an employees desk might
have unrestricted dialing privileges. Fig. 13 is explained
in the following.

Assumption:Since the VPN service is not defined by
H.323, here we are using the H.225.0 call signaling in
order to illustrate the call management sequence using a
Call Agent, and also to make it easier to understand by
using the same style of call sequence diagram. The
messages used here need to be identified in the future.

Description:

1, 2. The originator and its gatekeeper exchange admis-
sion messages.

3, 4. The originator (Caller) application sends a SETUP
message to the Called party and a flag will be set in the
SETUP message’s NonStandardControl field to activate
the USA residing in the gatekeeper, so that a Call Agent is
instantiated. After the call agent is instantiated, it resides
in the gatekeeper’s agency. It checks the allowed/
restricted phone number list first. If the called number
is in the allowed phone number list or not in the restricted
phone number list, then the CA takes over the call proces-
sing from the client application, sending out all the call
setup related call signaling messages. (If the called
number is denied, then the CA will send CALL
RELEASE to the originator).
5. 50. The Call Agent sends a SETUP message to the
called party via the gatekeeper.
6, 60. The Called party sends a CALL PROCEEDING
message to the CA via a gatekeeper.
7, 70. The CA sends a CALL PROCEEDING message to
the Originator via the gatekeeper.
8, 9. The Called party and its gatekeeper exchange admis-
sion messages—ARQ, ACF.
10, 100, 11, 110. The Called party sends an ALERTING
message to the CA via the gatekeeper, and the CA sends
an ALERTING message to the originator via the
gatekeeper.
12, 120, 13, 130. The Called party sends a CONNECT
message to the CA via the gatekeeper, and the CA
sends a CONNECT message to the originator via the
gatekeeper.

J. Tang et al. / Computer Communications 23 (2000) 740–753 751

Originator Gatekeeper CalledCallAgent

SETUP

CALL PROCEEDING

ARQ

ACF

ALERTING

ALERTING

CONNECT

SETUP

CA Instantiated

1

Check allowed/Restricted phone
number listSETUP

CALL PROCEEDING

ARQ

ACF

CALL  PROCEEDINGCALL PROCEEDING

CONNECT CONNECT

CONNECT

ALERTING

ALERTING

3

2

4

6’

6

5’

7’ 7

9

10’

8

10

11’ 11

12’
12

13’ 13

5

Fig. 13. OGA/OGR (Gatekeeper routed call signaling).



5. Conclusions

The mobile agent based advanced service architecture
solution proposed in this paper provides the following
features and benefits. The architecture can:

• Enable the provision of flexible software solutions, where
H.323 supplementary services software is partitioned
into mobile service agents realizing dedicated function-
alities (e.g. IN service features).

• It enables on demand provision of customized supple-
mentary services by dynamic construction of a user
service agent that uses downloaded service code from
the SEC or ESC to the gatekeeper.

• It allows for decentralized realization of supplementary
services, by means of bringing the user service agents
directly onto the user terminals.

We have demonstrated that mobile agents may be
successfully integrated with H.323 IP telephony protocols
for the provision of advanced services. The architecture that
this paper proposes seeks to address the entire service life-
cycle, an important consideration in opening the IP tele-
phony marketplace to non-traditional telephony service
providers.

Our future work consists of the construction of IP tele-
phony services not currently defined by the existing H.450.x
specifications in order to further validate the architecture.
We are also currently evaluating the traditional IN SIBs
with a view to re-factoring the behavior provided by
them. Finally, a performance evaluation of the existing
architecture using typical hardware and software platforms
needs to be performed.

Result of these activities will be communicated in future
publications.

References

[1] A. Gary, H.323: the multimedia communications standard for local
area networks, IEEE Communications Magazine December (1996)
000.

[2] H.323 Tutorial; http://www.webproforum.com/trillium/index.html.
[3] Internet Telephony; http://www.webproforum.com/siemens2.
[4] ITU-T Rec. H.225.0, Media Stream Packetization and Synchroniza-

tion for Visual Telephone Systems on Non-guaranteed Quality of
Service LANs, 1997.

[5] D. Clark, A Taxonomy of Internet Telephony Applications; http://
itel.mit.edu/itel/publications.html.

[6] ITU-T Rec. H.323, Visual Telephone Systems and Terminal

Equipment for Local Area Networks which Provide a Non-guaranteed
Quality of Service, 1996.

[7] H. Schulzrinne, J. Rosenberg, Comparison of H.323 and SIP; http://
www.cs.columbia.edu/~hgs/sip/h323.html.

[8] B. Pagurek, T. White, A quick evaluation of H.323/H.450, Technical
Report SCE-99-02, Systems and Computer Engineering, Carleton
University, April 1999.

[9] The Problems and Pitfalls of Getting H.323 Safely Through Firewalls;
http://support.intel.com/support/videophone/trial21/
H323_WPR.HTM.

[10] R. Minetti, E. Utsunomiya, The TINA service architecture; http://
www.tinac.com/specifications/abstract.htm.

[11] R.H. Glitho, Advanced services architectures for Internet telephony:
State of the Art and Prospects, Ericsson Research Canada Technical
Report, Montreal.

[12] T. Magedanz, K. Rothermel, S. Krause, Intelligent agents: an emer-
ging technology for next generation telecommunications? INFO-
COM’96, San Francisco, USA, 1996.

[13] J. Kiniry, D. Aimmerman, A Hands-on look at Java mobile agents;
http://computer.org/internet/ic1997/w4021abs.htm.

[14] H.S. Nwana, Software agents: an overview, Knowledge Engineering
Review 11 (3) (1996) 1–40.

[15] T. Magedanz, K. Rothermel, S. Krause, Intelligent agents: an emer-
ging technology for next generation telecommunications? IEEE
INFOCOM, San Francisco, April 1998.

[16] M. Breugst, T. Magedanz, Mobile agent—enabling technology for
active intelligent network implementation, IEEE Network May/June
(1998) 000.

[17] D.B. Lange, Present and future trends of mobile agent technology,
Second International Workshop on Mobile Agents’98 (MA’98) Stutt-
gart, Germany, September 1998.

[18] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code mobility,
IEEE Transactions on Software Engineering 24 (1998) 000.

[19] D. Chess, C. Harrison, A. Kershenbaum, Mobile agents: are they a
good idea?—update, Mobile Object Systems: Towards the Program-
mable Internet, Lecture Notes in Computer Science, 1222, Springer,
Berlin, 1997 pp. 46–48.

[20] A. Bieszczad, B. Pagurek, T. White, Mobile agents for network
management, IEEE Communications Surveys September (1998) 000.

[21] Jini specifications; http://www.sun.com/jini/specs.
[22] T. Magedanz, Intelligent Networks, International Thomas Computer

Press, 1996.
[23] T. Jan, Intelligent Networks, Artech House, 1994.
[24] V. Avery, J. Matta, Intelligent Networks: A Concept for the 21st

Century; http://www-dse.doc.ic.ac.uk.
[25] A. Park, A. Kupper, S. Leuker, JAE: A multi-agent system with

Internet services access, Proceedings of the Fourth International
Conference on Intelligence in Services and Networks, IS&N’97
Cernobbio, Italy, May 1997.

[26] A. Limongiello, R. Melen, M. Rocuaao, V. Trecordi, J. Wojtowicz,
An experimental open architecture to support multimedia services
based on CORBA, Java and WWW technologies, Proceedings of
the Fourth International Conference on Intelligence in Services and
Networks, IS&N’97 Cernobbio, Italy, May 1997.

[27] O. Miauno, J. Urata, Y. Sueda, Y. Niitsu, Advanced intelligent
network and the Internet combination service and its customization,
IEICE Transactions on Communication E81-B (8) (1998) 000.

J. Tang et al. / Computer Communications 23 (2000) 740–753752



J. Tang et al. / Computer Communications 23 (2000) 740–753 753

Jingrong Tang received a BEngng degree
in Telecommunications Engineering from
Changchun Post&Telecommunication
Institute (1990), China. She has worked
as a telecommunication engineer in Beijing
Telecom for three years. She is currently
pursuing her MEngng degree in Systems
and Computer Engineering at Carleton
University, Canada. Her research interests
include Mobile Agents and IP telephony.

Prof. Bernie Pagurek received his PhD in
Electrical Engineering from the University
of Toronto and is currently with the
Department of Systems and Computer
Engineering at Carleton University in
Ottawa, Canada. His research interests
include Communication Network Manage-
ment, Mobile Agents, Fault Diagnosis and
Alarm Correlation in Networks, and
Network Service Configuration,. He is the
principal investigator of a CITO (Commu-
nications and Information Technology

Ontario) research project on Network Management.

Tony White received BA and MA degrees in
Theoretical Physics from Cambridge
University in 1978 and 1982, respectively.
He has a Master of Computer Science from
Carleton University, awarded in 1993 and
is currently studying for a PhD in Systems
and Computer Engineering there. Tony has
published papers in the areas of Genetic
Algorithms, Object Oriented Design,
Mobile Agents, Biologically-inspired
Agents, Expert Systems and Fault Diagno-
sis and has co-authored six patents in the

Telecommunications domain. His research interests center on the
exploitation of biological metaphors for problem solving in Telecom-
munications, this being the subject of his PhD research.

Roch H. Giltho works for Ericsson
Research in Montreal, Canada where he
leads research activities in service engi-
neering for Internet Telephony. He joined
Ericsson Research, Canada in 1993 after
having worked three years for Ericsson
Telecom in Stockholm, Canada. Prior to
that he worked five years for a computer
manufacturer in Oslo, Norway. He holds
MSc degrees in Business Economics
(University of Grenoble, France), Pure
Mathematics (University of Geneva, Swit-

zerland) and Computer Science (University of Geneva). He is the
Editor-in-Chief of IEEE Communications Surveys (http://www.comso-
c.org/pubs/surveys/).


